Оптические характеристики фракций органического вещества агрегатов типичных черноземов

В. А. Холодов, В. А. Иванов, Ю. Р. Фарходов, Н. А. Сафронова, З. С. Артемьева, Н. В. Ярославцева

Почвенный институт им. В.В. Докучаева, Россия, 119017 Москва, Пыжевский пер., 7, стр. 2

Изучены спектры поглощения фракций органического вещества в ультрафиолетовой и видимой областях. Исследованы спектры водорастворимого органического вещества, лабильных гуминовых веществ и гуминовых веществ, выделяемых из мелких, средних и крупных агрегатов типичных черноземов многолетних опытов (Курская область). Использованы образцы чернозема типичного, отобранные в ежегодно косимой степи, и чернозема с экстремальной деградацией органического вещества (вариант многолетнего опыта – бессменный черный пар с 1964 г.) На основе полученных спектров рассчитаны параметры оптических показателей SUVA254, E2/E3, E4/E6. Наибольшие различия между агрегатами разного размера отмечались в вытяжках растворенного органического вещества. Для лабильных гуминовых веществ различия были меньше. В гуминовых веществах разницы между оптическими показателями для разных агрегатов одного вида использования черноземов не выявлено. Показано, что все три параметра изменяются не единообразно, таким образом являясь независимыми показателями, и для наиболее полной характеристики спектров следует использовать все три параметра.

Ключевые слова: лабильные гуминовые вещества, растворенное органическое вещество, почвенные агрегаты, многолетние полевые опыты, УФ-видимая спектроскопия, SUVA254, E2/E3, E4/E6

DOI: 10.19047/0136-1694-2017-90-56-72

Ссылки для цитирования

Холодов В.А., Иванов В.А., Фарходов Ю.Р., Артемьева З.С., Сафронова Н.А., Ярославцевa Н.В. Оптические характеристики фракций органического вещества агрегатов типичных черноземов // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Вып. 90. С. 56-72. doi: 10.19047/0136-1694-2017-90-56-72

Kholodov V. A., Ivanov V. A., Farkhodov Yu. R., Artemyeva Z. S., Safronova N. A., Yaroslavtseva N. V. The Optical Characteristics of Aggregates Organic Matter Fractions in Typical Chernozems, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2017, Vol. 90, pp. 56-72. doi: 10.19047/0136-1694-2017-90-56-72


THE OPTICAL CHARACTERISTICS OF AGGREGATES ORGANIC MATTER FRACTIONS IN TYPICAL CHERNOZEMS

V. A. Kholodov, V. A. Ivanov, Ju. R. FarKhodov, N. A. Safronova, Z. S. Artemyeva, N. V. Jaroslavceva

V.V. Dokuchaev Soil Science Institute, per. Pyzhevskii 7, Moscow, 119017 Russia

The consumption specters of organic matter fractions in ultraviolet and visible parts of specter (UV–visible specters) were investigated. The specters of soluted organic matter, as well as labile humic matters and humic matters itselves, which were extracted from small, medium and large aggregates from typical chernozems of long-term experiments were investigated. The samples of undisturbed chernozems, which are annually collected in the annually hayed steppe and from the chernozem with extreme organic matter degradation, were used (variant of long-termed experiment – irreplaceable black fallow since 1964). On the basis of specters obtained the parameters of optical indices SUVA254, E2/E3, E4/E6 were calculated. The highest differences between the aggregates were revealed in extracts of organic matter. The differences were lower for labile humic matters. There were no differences revealed for humic matters between the optical indices for different aggregates of one type of chernozems use. It is shown that all of the three parameters are not changed symbasically. Hence, all of the three parameters should be used for complete spectral characteristic.

Keywords: labile humic matters, soluted organic matter, soil aggregates, long-term field experiments, UV-visible spectroscopy, SUVA254, E2/E3, E4/E6


СОДЕРЖАНИЕ

1.   Артемьева З.С. Органическое вещество и гранулометрическая система почвы. М: ГЕОС, 2010. 240 с.

2.   Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.

3.   Зигбан К., Нордлинг К., Фальман А. Электронная спектроскопия. М.: Мир, 1971. 493 с.

4.   Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.

5.   Когут Б.М., Булкина Л.Ю. Сравнительная оценка воспроизводимости методов определения лабильных форм гумуса черноземов // Почвоведение. 1987. №7. C. 38–45.

6.   Когут Б.М., Титова Н.А., Булеева В.САнтропогенная трансформация качественного состава гумуса черноземов Каменной степи // Бюл. Почв. ин-та им. В.В. Докучаева. 2009. Вып. 64. С. 41–49.

7.   Когут Б.М., Шульц Э., Титова Н.А., Холодов В.АОрганическое вещество гранулоденсиметрических фракций целинного и пахотного типичного чернозема // Агрохимия. 2010. № 8. С. 3–9.

8.   Кононова М.М. Органическое вещество почвы. М.: Изд-во АН СССР, 1963. 315 с.

9.   Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1992. 401 c.

10. Сысуев С.А. Содержание и состав органического вещества агрегатов черноземов: Автореф. дис. … канд. с.-х наук. М., 2005. 24 с.

11. Тюрин И.В. Органическое вещество почвы и его роль в плодородии. М.: Наука, 1965. 320 с.

12. Тюрин И.В., Найденова О.А. К характеристике состава и свойств гуминовых кислот, растворимых в разведенных щелочах непосредственно и после декальцирования // Тр. Почв. ин-та АН СССР. 1951. Т. 38. С. 59–64.

13. Хан Д.В. Органо-минеральные соединения и структура почвы. М.: Наука, 1969. 140 с.

14. Холодов В.А., Ярославцева Н.В., Константинов А.И., Перминова И.В. Препаративный выход и свойства гуминовых кислот при последовательных щелочных экстракциях // Почвоведение. 2015. № 10. С. 1222–1231. doi: 10.7868/S0032180X15100056

15. Холодов В.А., Ярославцева Н.В., Лазарев В.И., Фрид А.СИнтерпретация данных агрегатного состава типичных черноземов разного вида использования методами кластерного анализа и главных компонент // Почвоведение. 2016. № 9. С. 1093–1100. doi: 10.7868/S0032180X16090070

16. Шеин Е.В. Курс физики почв. М.: Изд-во Моск. ун-та, 2005. 432 с.

17. Gregorich E.G., Gillespie A.W., Beare M.H., Curtin D., Sanei H., Yanni S.F. Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition // Soil Biol. Biochem. 2015. V. 91(12). P. 182–191. doi: 10.1016/j.soilbio.2015.08.032

18. Elliott E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils // Soil Sci. Soc. Am. J. 1986. V. 50. P. 627–633. doi:10.2136/sssaj1986.03615995005000030017x

19. Jastrow J.D. Soil aggregate formation and the accrual of particuney, mineral associated organic matter // Soil Biol. Biochem. 1996. V. 28. P. 657–676. doi: 10.1016/0038-0717(95)00159-X

20. Korshin G.V., Li C.W., Benjamin M.M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory // Water Research. 1997. V. 31(7). P. 1787–1795. doi: 10.1016/S0043-1354(97)00006-7

21. Peuravuori J., Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substance // Anal. Chim. Acta. 1997. V. 337. P. 133–149. doi: 10.1016/S0003-2670(96)00412-6

22. Six J., Elliott E.T., Paustian K., Doran J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils // Soil Sci. Soc. Am. J. 1998. V. 62. P.1367–1377. doi: 10.2136/sssaj1998.03615995006200050032x

23. Six J., Paustian K., Elliott E. T., Combrink C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon // Soil Sci. Soc. Am. J. 2000. V. 64. P. 681–689. doi:10.2136/sssaj2000.642681x

24. Thurman E.M. Organic Geochemistry of Natural Waters. Springer Verlag GMBH, 1985. 497 p. doi: 10.1007/978-94-009-5095-5

25. Vergnoux A., Di Rocco R., Domeizel M., Guiliano M., Doumenq P., Theraulaz F. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches // Geoderma. 2011. V. 160 (3–4). P. 434–443. doi: 10.1016/j.geoderma.2010.10.014

26. Weishaar J.L., Aiken G.R., Bergamaschi B.A., Fram M.S., Fujii R., Mopper K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon // Environ. Sci. Technol. 2003. V. 37(20). P. 4702–4708. doi: 10.1021/es030360x

27. IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. Word Soil Resources Report 106. FAO. Rome.

28. Yan M., Dryer D., Korshin G.V. Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes // Chemosphere. 2016. V. 148(4). P. 426–435. doi: 10.1016/j.chemosphere.2016.01.055

REFERENCES

1.    Artemyeva Z.S. Organic matter and granulometric soil system, Moscow, GEOS, 2010, 240 p. (In Russian)

2.    Vadjunina A.F., Korchagina Z.A. Methods for studying the physical properties of soils, Moscow: Agropromizdat, 1986, 416 p. (In Russian)

3.    Zigban K., Nordling K., Falman A. Electronic spectroscopy, Moscow, Mir Publ., 1971, 493 p. (In Russian)

4.    Classification and diagnostics of soils of the USSR, Moscow, Kolos, Publ., 1977, 223 p. (In Russian)

5.    Kogut B.M., Bulkina L.Yu. Comparative evaluation of the reproducibility of methods for determining the labile forms of humus in chernozems, Pochvovedenie, 1987, No. 7, pp. 38–45. (In Russian)

6.    Kogut B.M., Titova N.A., Buleeva V.S. Anthropogenic transformation of the qualitative composition of humus of chernozems of the Kamennaya SteppeByulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2009, V. 64, pp. 41–49. (In Russian)

7.    Kogut B.M.., Shultz E., Titova N.A., Kholodov V.A. Organic matter of granulodensimetric fractions of virgin and arable typical chernozem, Agrokhimiya, 2010, № 8, pp. 3–9. (In Russian)

8.    Kononova M.M. Organic matter of the soil, Moscow, Publishing House of the USSR Academy of Sciences, 1963, 315 p. (In Russian)

9.    Orlov D.S. Chemistry of soils, Moscow: Mosk. University Publ., 1992, 401 p. (In Russian)

10. Sysuev S.A. The content and composition of organic matter of aggregates of chernozems: Author's abstract. dis. ... cand. s.-h sciences, Moscow, 2005, 24 p. (In Russian)

11. Tyurin I.V. Organic matter of the soil and its role in fertility, Moscow: Nauka, 1965, 320 p. (In Russian)

12. Tyurin I.V., Naidenova O.A. To the characterization of the composition and properties of humic acids soluble in dilute alkalis directly and after decalcification, Tr. Soil. Institute of the Academy of Sciences of the USSR, 1951, V. 38, pp. 59–64. (In Russian)

13. Khan D.V. Organo-mineral compounds and soil structure, Moscow, Nauka, 1969. 140 p. (In Russian)

14. Kholodov V.A., Yaroslavtseva N.V., Konstantinov A.I., Perminova I.V. Preparative Yield and Properties of Humic Acids Obtained by Sequential Alkaline Extractions,' Eurasian Soil Science, 2015, V. 48 (10), pp. 1101–1109. doi: 10.1134/S1064229315100051

15. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S. Interpretation of Data on the Aggregate Composition of Typical Chernozems under Different Land Use by Cluster and Principal Component Analyses, Eurasian Soil Science, 2016, V. 49 (9), pp. 1026-1032. doi: 10.1134/S1064229316090076

16. Shein E.V. Course of soil physics, Moscow: Mosk. Univ. Publ., 2005, 432 p. (In Russian)

17. Gregorich E.G., Gillespie A.W., Beare M.H., Curtin D., Sanei H., Yanni S.F. Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition, Soil Biol. Biochem. 2015. V. 91(12). P. 182–191. doi: 10.1016/j.soilbio.2015.08.032

18. Elliott E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils, Soil Sci. Soc. Am. J. 1986. V. 50. P. 627–633. doi:10.2136/sssaj1986.03615995005000030017x

19. Jastrow J.D. Soil aggregate formation and the accrual of particuney, mineral associated organic matter, Soil Biol. Biochem. 1996. V. 28. P. 657–676. doi: 10.1016/0038-0717(95)00159-X

20. Korshin G.V., Li C.W., Benjamin M.M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory, Water Research. 1997. V. 31(7). P. 1787–1795. doi: 10.1016/S0043-1354(97)00006-7

21. Peuravuori J., Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substance, Anal. Chim. Acta. 1997. V. 337. P. 133–149. doi: 10.1016/S0003-2670(96)00412-6

22. Six J., Elliott E.T., Paustian K., Doran J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Sci. Soc. Am. J. 1998. V. 62. P.1367–1377. doi: 10.2136/sssaj1998.03615995006200050032x

23. Six J., Paustian K., Elliott E. T., Combrink C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon, Soil Sci. Soc. Am. J. 2000. V. 64. P. 681–689. doi:10.2136/sssaj2000.642681x

24. Thurman E.M. Organic Geochemistry of Natural Waters. Springer Verlag GMBH, 1985. 497 p. doi: 10.1007/978-94-009-5095-5

25. Vergnoux A., Di Rocco R., Domeizel M., Guiliano M., Doumenq P., Theraulaz F. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches, Geoderma. 2011. V. 160 (3–4). P. 434–443. doi: 10.1016/j.geoderma.2010.10.014

26. Weishaar J.L., Aiken G.R., Bergamaschi B.A., Fram M.S., Fujii R., Mopper K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon, Environ. Sci. Technol. 2003. V. 37(20). P. 4702–4708. doi: 10.1021/es030360x

27. IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. Word Soil Resources Report 106. FAO. Rome.

28. Yan M., Dryer D., Korshin G.V. Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes, Chemosphere. 2016. V. 148(4). P. 426–435. doi: 10.1016/j.chemosphere.2016.01.055