И. А. Фастовец1,2, А. Д. Котельникова1,2, О. Б. Рогова1, Н. И. Сушков1,2, Д. С. Волков2, М. А. Проскурнин2, Е. Б. Пашкевич2
1Почвенный институт им. В. В. Докучаева, Россия, 119017, Москва, Пыжёвский пер., 7, стр. 2
2МГУ им. М.В. Ломоносова, Россия, 119991, Москва, Ленинские горы, 1
В условиях вегетационного опыта с ячменем при искусственном освещении оценивали способность лантана – одного из наиболее распространенных редкоземельных элементов – накапливаться в листьях и стеблях растений и влиять на элементный состав, биомассу и содержание хлорофиллов и каротиноидов. В отдельных экспериментах изучали воздействие лантана на длину корней и колеоптилей проростков ячменя. Показано, что La3+ способен эффективно угнетать рост корешка при концентрации в растворе выше 10 мг/л и одновременно стимулировать рост колеоптиля при концентрации выше 50 мг/л. В вегетационном опыте отмечено значимое накопление лантана в листьях и стеблях, начиная с концентрации внесенного в почву лантана 20 и 50 мг/кг соответственно, отмечено значимо большее накопление лантана листьями, чем стеблями. Обнаружено значимое уменьшение содержания хлорофиллов и каротиноидов в варианте с внесением 100 мг/кг лантана по сравнению с контролем и накопление надземной биомассы при концентрации внесенного лантана 100–200 мг/кг. Накопление биомассы, обнаруженное в вегетационном опыте, согласуется со стимулирующим влиянием лантана на удлинение колеоптиля проростков, что, учитывая одновременное уменьшение длины корешка, может объясняться гормональными процессами. Полученные результаты могут быть полезны для переоценки безопасности применения редкоземельных элементов в сельском хозяйстве и для установления влияния лантана на биохимические процессы в растениях.
Ключевые слова: лантан, поглощение, биохимия, токсичность
DOI: 10.19047/0136-1694-2016-88-27-46
Ссылки для цитирования: Фастовец И.А., Котельникова А.Д., Рогова О.Б., Волков Д.С., Проскурнин М.А., Пашкевич Е.Б. Влияние внесенного в почву лантана на химический состав растений ячменя в условиях вегетационного опыта // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Вып. 88. С. 27-46. doi: 10.19047/0136-1694-2017-88-27-46
Fastovets I.A., Kotel’nikova A.D., Rogova O.B., Sushkov N.I., Volkov D.S., Proskurnin M.A., Pashkevich Ye.B. The impact of the implemented lanthanum on the chemical composition of barley crops in conditions of vegetation experiment, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2017, Vol. 88, pp. 27-46. doi: 10.19047/0136-1694-2017-88-27-46
THE IMPACT OF THE IMPLEMENTED LANTHANUM ON THE CHEMICAL COMPOSITION OF BARLEY CROPS IN CONDITIONS OF VEGETATION EXPERIMENT
I. A. Fastovets1,2, A. D. Kotel’nikova1,2, O. B. Rogova1, N. I. Sushkov1,2, D. S. Volkov2, M. A. Proskurnin2, Ye. B. Pashkevich2
1V.V. Dokuchaev Soil Science Institute, per. Pyzhevskii 7, Moscow, 119017 Russia
2Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991 Russia
In conditions of the vegetation experiment with barley under the artificial illumination, we assessed the ability of lanthanum, which is one of the most widely spread lanthanons, to accumulate in leaves and stems of plants. Also we assessed its ability to affect the elemental composition, biomass and chlorophyll and carotinoides content of plants. The separate studies allowed us to investigate the impact of lanthanum on root length and coleoptiles of barley seedlings. It is shown that La3+ is able to depress significantly the growth of rootlet if its concentration will exceed 10 mg/l and simultaneously stimulate the growth of coleoptile at the concentration exceeding 50 mg/l. The vegetation experiment showed the significant accumulation of lanthanum in the leaves and stems beginning from the exceeding the concentration of 20 and 50 mg/kg of lanthanum within the soil. It is marked that the accumulation of lanthanum in leaves is higher than in stems. The significant decrease of the chlorophyll and carotinoides in the variant with the implementation of 100 mg/kg of lanthanum comparing to the control and the accumulation of ground biomass at the concentration of the implemented lanthanum of 100–200 mg/kg. The accumulation of biomass, which was revealed in the vegetation experiment, correlates with the stimulating impact of lanthanum on the elongation of coleoptile. Taking into account the simultaneous decrease of the root length, the elongation of coleoptile may be explained by the hormonal process. The results obtained may be useful for re-assessment of the security of the implementation of lanthanons in agriculture and the impact of lanthanum on the biochemical processes in plants.
Keywords: lanthanum, consumption, biochemistry, toxicity
СПИСОК ЛИТЕРАТУРЫ
1. Pochinok Kh.N. Methods of Biochemical Analysis of Plants, Kiev: Naukova Dumka, 1976. (in russian)(Починок Х.Н. Методы биохимического анализа растений. Киев: Наукова думка, 1976.)
2. Tyler G. Rare earth elements in soil and plant systems – A review, Plant Soil, 2004, V, 267, No. 1–2, pp. 191–206.
3. Babula P., Adam V., Opatrilova R., Zehnalek J., Havel L., Kizek R. Uncommon heavy metals, metalloids and their plant toxicity: a review, Environ. Chem. Lett., 2008, V. 6, No. 4, pp. 189–213.
4. Beffa R., Martin H.V., Pilet P.-E. In Vitro Oxidation of Indoleacetic Acid by Soluble Auxin-Oxidases and Peroxidases from Maize Roots, Plant Physiology, 1990, V. 94, No. 2, pp. 485–491.
5. Bonner J. Limiting Factors and Growth Inhibitors in the Growth of the Avena Coleoptile, Am. J. Botany,1949, V. 36, No. 4, pp. 323–332.
6. Castor S.B., Hedrick J.B. Rare earth elements, Industrial minerals: Society for mining, metallurgy, and exploration, Littleton, Colorado, 2006, pp. 769–792.
7. Cooil B.J. Relationships of Certain Nutrients, Metabolites, and Inhibitors to Growth in the Avena Coleoptile, Plant Physiology, 1952, V, 27, No. 1, pp. 49–69.
8. Cuypers A., Remans T., Weyens N., Colpaert J., Vassilev A., Vangronsveld J. Soil-Plant Relationships of Heavy Metals and Metalloids, Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Dordrecht: Springer Netherlands, 2013, pp. 161–193.
9. d’Aquino L., de Pinto M.C., Nardi L., Morgana M., Tommasi F. Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum, Chemosphere, 2009, V. 75, No. 7, pp. 900–905.
10. Damhus T., Hartshorn R.M., Hutton A.T. Nomenclature of inorganic chemistry: IUPAC recommendations 2005. Royal Society of Chemistry, 2005.
11. de Oliveira C., Ramos S.J., Siqueira J.O., Faquin V., de Castro E.M., Amaral D.C., et al. Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants, Ecotoxicology and Environmental Safety, 2015, V. 122, pp. 136–144.
12. Diatloff E., Smith F.W., Asher C.J. Rare earth elements and plant growth: I. Effects of lanthanum and cerium on root elongation of corn and mungbean, J. Plant Nutrition, 1995, V. 18, No. 10, pp. 1963–1976.
13. Ding S., Liang T., Zhang C., Yan J., Zhang Z. Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation, J. Experimental Botany, 2005, V. 56, No. 420, pp. 2765–2775.
14. Durães N., Silva E.F.d., Bobos I., Ávila P. Rare Earth Elements Fractionation in Native Vegetation from the Moncorvo Iron Mines, NE Portugal, Procedia Earth and Planetary Science, 2014, V. 10, pp. 376–382.
15. Fashui H., Ling W., Chao L. Study of lanthanum on seed germination and growth of rice, Biological Trace Element Research, 2003, V. 94, No. 3, pp. 273–286.
16. Foley N.K., De Vivo B., Salminen R. Preface, J. Geochemical Exploration, 2013, V. 133, No. Complete, pp. 1–5.
17. Friedman H., Meir S., Rosenberger I., Halevy A.H., Kaufman P.B., Philosoph-Hadas S. Inhibition of the Gravitropic Response of Snapdragon Spikes by the Calcium-Channel Blocker Lanthanum Chloride, Plant Physiology, 1998, V. 118, No. 2, pp. 483–492.
18. Gao X., Alvo M., Chen J., Li G. Nonparametric multiple comparison procedures for unbalanced one-way factorial designs, J. Statistical Planning and Inference, 2008, V. 138, No. 8, pp. 2574–2591.
19. Han F., Shan X.-Q., Zhang J., Xie Y.-N., Pei Z.-G., Zhang S.-Z., et al. Organic acids promote the uptake of lanthanum by barley roots, New Phytologist, 2005, V. 165, No. 2, pp. 481-492.
20. Hanzely L., Harmet K.H. Effect of Lanthanum on Cell Wall Elongation in Avena Coleoptile Segments: Physiological and Ultrastructural Studies, Zeitschrift für Pflanzenphysiologie, 1982, V. 107, No. 3, pp. 223–230.
21. Harmet K.H. Rapid Growth Responses of Avena Coleoptile Segments to Lanthanum and Other Cations, Plant Physiology, 1979, V. 64, No. 6, pp. 1094–1098.
22. Hasenstein K.-H., Evans M.L. Calcium Dependence of Rapid Auxin Action in Maize Roots, Plant Physiology. 1986, V. 81, No. 2, pp. 439–443.
23. Hu X., Ding Z., Wang X., Chen Y., Dai L. Effects of Lanthanum and Cerium on the Vegetable Growth of Wheat (Triticum aestivum L.) Seedlings, Bulletin of Environmental Contamination and Toxicology, 2002, V. 69, No. 5, pp. 0727–0733.
24. Hu X., Wang X.-R., Wang C. Bioaccumulation of Lanthanum and Its Effect on Growth of Maize Seedlings in a Red Loamy Soil1, Pedosphere, 2006a, V. 16, No. 6, pp. 799–805.
25. Hu Z., Richter H., Sparovek G., Schnug E. Physiological and Biochemical Effects of Rare Earth Elements on Plants and Their Agricultural Significance: A Review, J. Plant Nutrition, 2004, V. 27, No. 1, pp. 183–220.
26. Hu Z., Haneklaus S., Sparovek G., Schnug E. Rare Earth Elements in Soils, Communications in Soil Science and Plant Analysis, 2006b, V. 37, No. 9–10, pp. 1381–1420.
27. Jonckheere A.R. A Distribution-Free k-Sample Test Against Ordered Alternatives, Biometrika, 1954, V. 41, No. 1/2, pp. 133–145.
28. Kabata-Pendias A. Trace elements in soils and plants. CRC press, 2011.
29. Karcz W., Stolarek J., Zientara M. Short-term effects of Mn2+ on elongation growth and H+-extrusion in Zea mays L. coleoptile segments, Acta Societatis Botanicorum Poloniae, 1988, V. 57, No. 3, pp. 341–348.
30. Kobayashi Y., Ikka T., Kimura K., Yasuda O., Koyama H. Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation, Functional Plant Biology, 2007, V. 34, No. 11, pp. 984–994.
31. Kruskal W.H., Wallis W.A. Use of Ranks in One-Criterion Variance Analysis, J. the American Statistical Association. 1952, V. 47, No. 260, pp. 583–621.
32. Li F., Shan X., Zhang T., Zhang S. Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis, Environmental Pollution, 1998, V. 102, No. № 2–3, pp. 269–277.
33. Li J.-Y., Jiang A.-L., Chen H.-Y., Wang Y., Zhang W. Lanthanum Prevents Salt Stress-induced Programmed Cell Death in Rice Root Tip Cells by Controlling Early Induction Events, J. Integrative Plant Biology, 2007, V. 49. № 7, pp. 1024–1031.
34. Liang T., Ding S., Song W., Chong Z., Zhang C., Li H. A review of fractionations of rare earth elements in plants, J. Rare Earths, 2008, V. 26, No. 1, pp. 7–15.
35. Liu D., Lin Y., Wang X. Effects of lanthanum on growth, element uptake, and oxidative stress in rice seedlings, J. Plant Nutrition and Soil Science, 2012, V. 175, No. 6, pp. 907–911.
36. Liu D., Wang X., Zhang X., Gao Z. Effects of lanthanum on growth and accumulation in roots of rice seedlings, Plant Soil Environ, 2013, V. 59, No. 5, pp. 196–200.
37. Lüdin E. A test procedure based on ranks for the statistical evaluation of toxicological studies, Archives of toxicology, 1985, V. 58, No. 1, pp. 57–58.
38. Ma Y., Zhang P., Zhang Z., He X., Li Y., Zhang J., et al. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber, Nanotoxicology, 2015, V. 9, No. 2, pp. 262-270.
39. Meehan B., Peverill K., Skroce A. The impact of bioavailable rare earth elements in Australia agricultural soils, Australia soil and plant analysis. Australia: First National Workshop on Soil and Plant Analysis, 1993, pp. 36–41.
40. Nagahashi G., Thomson W.W., Leonard R.T. The Casparian Strip as a Barrier to the Movement of Lanthanum in Corn Roots, Science, 1974, V. 183, No. 4125, pp. 670–671.
41. Nicodemus M.A., Salifu K.F., Jacobs D.F. Influence of lanthanum level and interactions with nitrogen source on early development of Juglans nigra, J. Rare Earths, 2009, V, 27, No. 2, pp. 270–279.
42. Pang X., Li D., Peng A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil, Environ. Sci. Poll. Res., 2002, V. 9, No. 2, pp. 143.
43. Pickard B.G. Comparison of calcium and lanthanon Ions in the Avena-coleoptile growth test, Planta, 1970, V. 91, No. 4, pp. 314–320.
44. Robards A.W., Robb M.E. The entry of ions and molecules into roots: an investigation using electron-opaque tracers, Planta, 1974, V. 120. № 1, pp. 1–12.
45. Ruíz-Herrera L.F., Sánchez-Calderón L., Herrera-Estrella L., López-Bucio J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings, Plant Soil, 2012, V. 353, No. 1, pp. 231–247.
46. Sadeghi M., Petrosino P., Ladenberger A., Albanese S., Andersson M., Morris G., et al. Ce, La and Y concentrations in agricultural and grazing-land soils of Europe, J. Geochemical Exploration, 2013, V. 133, pp. 202–213.
47. Schneider E.A., Wightman F. Metabolism of auxin in higher plants, Annual Review of Plant Physiology, 1974, V. 25, No. 1, pp. 487–513.
48. Song W., Hong F., Wan Z. Effects of lanthanum element on the rooting of loquat plantlet in vitro, Biological Trace Element Research, 2002, V. 89, No. 3, pp. 277–284.
49. Steveninck R.F.M., Steveninck M.E., Chescoe D. Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare), Protoplasma, 1976, V. 90, No. 1, pp. 89–97.
50. Sun Z., Wang L., Zhou Q., Huang X. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings, Chemosphere, 2013, V. 93, No. 2, pp. 344–352.
51. Taylor S.R., McLennan S.M. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, UK, 1985.
52. Team R.C. R: A language and environment for statistical computing, 2013.
53. Terpstra T. The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Indagationes Mathematicae. 1952, V. 14, No. 1952, pp. 327–333.
54. Turra C., Fernandes E.A.D.N., Bacchi M.A., Adrián G., Sarriés F.B.J., Creste A.L.T., et al. Effects of Lanthanum on Citrus Plant, Int. J. New Technol. Res., 2015, V. 1, No. 7, pp. 48–50.
55. von Tucher S., Schmidhalter U. Lanthanum uptake from soil and nutrient solution and its effects on plant growth, J. Plant Nutrition and Soil Science, 2005, V. 168, No. 4, pp. 574–580.
56. Wang C., Lu X., Tian Y., Cheng T., Hu L., Chen F., et al. Lanthanum Resulted in Unbalance of Nutrient Elements and Disturbance of Cell Proliferation Cycles in V. faba L. Seedlings, Biological Trace Element Research, 2011a, V. 143, No. 2, pp. 1174–1181.
57. Wang C., He M., Shi W., Wong J., Cheng T., Wang X., et al. Toxicological effects involved in risk assessment of rare earth lanthanum on roots of Vicia faba L. seedlings, J. Environmental Sciences, 2011b, V. 23, No. 10, pp. 1721–1728.
58. Wang L., Huang X., Zhou Q. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish, Chemosphere, 2008, V. 73, No. 3, pp. 314–319.
59. Xiong S.-L., Xiong Z.-T., Chen Y.-C., Huang H. Interactive Effects of Lanthanum and Cadmium on Plant Growth and Mineral Element Uptake in Crisped-Leaf Mustard Under Hydroponic Conditions, J. Plant Nutrition, 2006, V. 29, No. 10, pp. 1889–1902.
60. Xu C.-M., Zhao B., Wang X.-D., Wang Y.-C. Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrata, Biologia Plantarum, 2007, V. 51, No. 3, pp. 567–570.
61. Zeng F.L., Shi P., Zhang M.F., Deng R.W. Effect of lanthanum on ion absorption in cucumber seedling leaves, Biological Trace Element Research, 2000, V. 78, No. 1, pp. 265.
62. Zeng Q., Zhu J., Cheng H., Xie Z., Chu H. Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols, Ecotoxicology and environmental safety, 2006, V. 64, No. 2, pp. 226–233.
63. Zheng H.-L., Zhao Z.-Q., Zhang C.-G., Feng J.-Z., Ke Z.-L., Su M.-J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride, Biometals, 2000, V. 13, No. 2, pp. 157–163.