Ю. Н. Водяницкий1, О. Б. Рогова2
1МГУ им. М.В. Ломоносова, Россия, 119991, Москва, Ленинские горы, 1
2Почвенный институт им. В.В. Докучаева, Россия, 119017, Москва, Пыжевский пер, 7, стр. 2
Литогенные минералы, содержащие лантаниды (Ln), неустойчивы в зоне гипергенеза. Их растворение обедняет почвы лантанидами, особенно в гумидных регионах. В сухостепной зоне при нейтральной реакции среды лантаниды теряют подвижность и становятся недоступными растениям. Лантаниды обладают высокой биохимической и биологической активностью. Установлено физиологическое действие лантанидов на растения. Отдельные части сосудистых растений в разной степени накапливают лантаниды. Различие достигает 100-кратного уровня. Во многих растениях уменьшение накопления лантанидов идет в таком порядке: корни > листья > стебли > зерно/плоды. Аккумуляторы лантанидов (например, папоротники), способствуют их накоплению в гумусовом горизонте почв. В Китае широко применяют лантанидсодержащие удобрения в виде опудривания семян и внекорневой подкормки в почвах с дефицитом лантанидов – с низким валовым содержанием и/или с низкой их доступностью. Несмотря на то, что в лабораторных условиях при умеренном повышении концентрации Ln в растворе часто фиксируют повышение урожайности культур, при внесении лантанидов в почвы положительный эффект наблюдается не всегда. В почвах с высокой сорбционной емкостью основная доля Ln сорбируется, резкое же повышение доз снижает урожайность растений. Легкие лантаниды обладают физическим и химическим сродством с Cа2+, масштабное замещение Cа2+ лантанидами вредит развитию растений. Высокие дозы лантанидов негативно влияют на биохимические процессы в растениях. Конкуренция с железом и фосфором обусловлена близкой растворимостью фосфатов железа и лантана: накопление La в тканях растений влияет на содержание в них P и Fe.
Ключевые слова: удобрения, аккумуляция растениями, фракционирование лантанидов, урожайность.
DOI: 10.19047/0136-1694-2016-84-101-118
THE BIOGEOCHEMISTRY OF LANTANIDES IN SOILS
Yu. N. Vodyanitskii1, O. B. Rogova2
1Lomonosov Moscow State University, Russia,119991, Moscow, 1 Leninskiye Gory
2V.V. Dokuchaev Soil Science Institute, Russia, 119017, Moscow, Pyzhevskii 7, bld. 2
The lithogenous minerals containing lantanides (Ln) are unsustainable within the zone of hypergenesis. Their dilution impoverish soils in terms of lantanides content, especially in humid regions. In conditions of neutral environmental pH in dry steppe zone, the lantanides loose their mobility, and, hence, become unavailable for plants. The lantanides are characterized by the high biochemical and biological activity. The physiologic impact of lantanides on plants is set. The separate parts of vascular plants accumulate lantanides in different degree. The difference may reach 100-fold level. For many plants the accumulation of lantanides occurs at the reverse order: roots > leaves > stalks > grain/fruits. Lantanides accumulators (such as brackens), promote their accumulation within the humus layer of soils. Fertilizers with lantanides are widely implemented in China. They powder seeds and implement top dressing in soils with lantanides deficit, i.e., with low bulk content and/or with low availability for plants. Although at moderate increasing of Ln concentration in solution, there is often observed the increasing of the crop yield in laboratory conditions. However, the implementation of lantanides in the soil does not always give the positive effect. The main share of Ln in the soils with high sorption capacity is sorbed, and the increasing of doses leads to the decrease of the yield. The light lantanides are characterized by physical and chemical properties equal to Cа2+. And the mass replacement of Cа2+ by lantanides harms the development of plants. The high doses of lantanides have a negative impact on the biochemical processes in plants. The competition with iron and phosphorus is stipulated by the close solubility of iron and lanthanum phosphates: the accumulation of La in plants tissues affects the content of P and Fe within them.
Keywords: fertilizers, the mobility of elements, fractionation of lantanides, crop yield.
СПИСОК ЛИТЕРАТУРЫ
1. Абашеева Н.Е., Инешина Е.Г., Меркушева М.Г., Кожевникова Н.М., Митыпов Б.Б. Влияние лантансодержащих микроудобрений на биологическую активность каштановой почвы // Агрохимия. 2003. № 8. С. 39-44.
2. Абашеева Н.Е., Кожевникова Н.М., Меркушева М.Г., Убугунов Л.Л., Маладаев А.А., Солдатова З.А. Влияние лантана и неодима на нитрификационную способность почвы, урожай кукурузы и гороха // Агрохимия. 2005. № 2. С. 55–60.
3. Водяницкий Ю.Н. Геохимическое фракционирование лантанидов в почвах и горных породах (обзор литературы) // Почвоведение. 2012. № 1. С. 69–81.
4. Гринвуд Н., Эрншо А. Химия элементов. М.: Бином, 2008. Т. 1. 607 c. Т. 2. 670 с.
5. Кожевникова Н.М., Ермакова Е.П. Влияние сульфата самария на продуктивность гороха и овощных культур, подвижность самария в каштановой почве и его накопление растениями // Агрохимия. 2009. № 6. С. 52–55.
6. Маладаев А.А. Влияние лантана на биологическую активность почв, урожай и качество растений. Автореф. дис. … к. б. н. Улан-Удэ, 2007. 19 с.
7. Муравин Э.А., Титова В.И. Агрохимия. М.: КолосС, 2009. 462 с.
8. Переломов Л.В. Взаимодействие редкоземельных элементов с биотическими и абиотическими компонентами почв // Агрохимия. 2007. № 11. С. 85–96.
9. Akagi T., Masuda A. A simple thermodynamic interpretation of Ce anomaly // Geochem. J. 1998. V. 32. P. 301–314.
10. Anderson C.R., Pederson K. In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides // Geobiology. 2003. V. 1. P. 169–178.
11. Andres Y., Thouand G., Boualam M., Mergey M. Factors influencing the biosorption of gadolinium by micro-organisms and its mobilization from sand // Appl. Microbiol. Biot. 2000. V. 54. P. 262–267.
12. Astrom M., Corin N. Distribution of rare elements in anionic, cationic and particulate fractions in boreal humus-rich streams affected by acid sulfate soils // Water Res. 2003. V. 37. P. 273–280.
13. Bakou A., Buser C., Dandulafis G., Brudvig G., Ghaotakis D.F. Calcium binding sites of photosystem II as probed by lanthanides // Biochem. Biophys. Acta. 1992. V. 1099. P. 67–77.
14. Bibak A., Sturup L., Knudsen L., Gundersen V. Concentration of 63 elements in cabbage and sprouts in Denmark // Commun. Soil Sci. Plan. J. 1999. V. 30. P. 2409–2418.
15. Brantley S.L., Liermann L., Bau M., Wu S. Uptake of trace elements and rare earth elements from hornblende by soil bacterium // Geomicrobiol. J. 2001. V. 18. P. 37–61.
16. Braun J.J., Pagel M., Herbillon A., Rosin C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile – a mass-balance study // Geochim. Cosmohim. Acta. 1993. V. 57. P. 4419–4434.
17. Braun J.J., Pagel M., Muller J.P., Bilong P., Michaud A., Guillet B. Cerium anomalies in lateritic profiles // Geochim. Cosmohim. Acta. 1990. V. 51. P. 597–605.
18. Braun J.J., Viers J., Dupre B., Polve M., Ndam J., Muller J. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: Implication for the present dynamics of the soil covers of the humid tropical regions // Geochim. Cosmohim. Acta. 1998. V. 62. P. 273–299.
19. Brown P.H., Rathjen A.H., Graham R.D., Tride D.E. Rare earth elements in biological system // Handbook on the physics and chemistry of rare earth. Elsevier Sci. Pab. Amsterdam. 1990. V. 13.
20. Cao X.D., Chen Y., Gu Z.M., Wang X.R. Determination of trace rare earth elements in plant and soil by inductively coupled plasma mass spectrometry // Int. J. Environ. An. Ch. 2000. V. 76. P. 295–309.
21. Cao X.D., Chen Y., Wang X.R., Deng X.H. Effect of redox potential and pH value on the release of rare elements from the soil // Ghemosphere. 2001. V. 44. P. 655–661.
22. Dia A., Gruau G., Olivie-Lauquet G., Riou C., Molenat J., Curmi P. The distribution of rare earth elements in groundwater: Assessing the role of source-rock composition, redox changes and colloidal particles // Geochim. Cosmohim. Acta. 2000. V. 64. P. 4231–4151.
23. Diatloff E., Smirh F.W., Asher C.J. Rare-earth elements and plant growth. 2. Responses of corn and mungbean to low concentrations of lanthanum in dilute, continuously flowing nutrient solutions // J. Plant Nutr. 1995а. V. 18. P. 1977–1989.
24. Diatloff E., Smirh F.W., Asher C.J. Rare-earth elements and plant growth. 3. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions // J. Plant Nutr. 1995b. V. 18. P. 1991–2003.
25. Diatloff E., Smirh F.W., Asher C.J. Rare-earth elements and plant growth. 1. Effects of lanthanum and cerium on root elongation of corn and mungbean // J. Plant Nutr. 1995с. V. 18. P. 1963–1976.
26. Elderfield H., Upstillgoddard R., Sholkovitz E.R. The rare-earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters // Geochim. Cosmochim. Acta. 1990. V. 54. P. 971–991.
27. Esser K.B., Bockheim J.G., Helmke P.A. Trace element distribution in soils formed in the Indian Dunes, USA // Soil Sci. 1991. V. 152. Р. 340–350.
28. Furie B., Eastlake F., Schechter A.N., Anfinsen C.B. The interaction of the lanthanide ions with staphylococcal nuclease // J. Biol. Chem. 1973. V. 248. P. 5821–5825.
29. Goldstein S.J., Jacobsen S.B. Rare-earth elements in river waters // Earth Planet Sci. Lett. 1988. V. 89. P. 35–47.
30. Hong F.S., Wang L., Meng X.X., Wei Z., Zhao G.W. The effect of cerium(III) on the chlorophyll formation in spinach // Biol. Trace Elem. Res. 2002. V. 89. P. 263–276.
31. Ishikawa S., Wagatsuma T., Ikarashi T. Comparative toxicity of Al3+, Yb3+, and La3+ to root tip cells differing in tolerance to high Al3+ in terms of ionic potentials of dehydrated trivalent cations // Soil Sci. Plant Nutr. 1996. V. 42. P. 613–625.
32. Kelley C., Curtis A.J., Uno J.K., Berman C.L. Spectroscopic studies of the interaction of Eu(III) with roots of water hyacinth // Water Air Soil Poll. 2000. V. 119. P. 171–176.
33. Kelley C., Mielke R.E., Dimaquido D., Curtis A.J., Dewitt J.G. Adsorption of Eu(III) onto roots of water hyacinth // Environ. Sci. Technol. 1999. V. 33. P. 1439–1443.
34. Li F., Shan X., Zhang T., Zhang S. Evaluation of plant availability of rare elements in soils by chemical fractionation and multiple regression analysis // Environ. Poll. 1998. V. 102. P. 269–277.
35. Market B., Li Z.D. Natural background concentrations of rare-earth elements in a forest ecosystem // Sci. Total Environ. 1991. V. 103. P. 27–35.
36. Minarik L., Zigova A., Bendl J., Skrivan P., St/astny M. The behavior of rare elements and Y during the rock weathering and soil formation in the Ricany granite massif, Central Bohemia // Sci. Total Environ. J. 1998. V. 215. P. 101–111.
37. Nagao S., Rao R.R., Killey R.W.D., Young J.L. Migration behavior of Eu(III) in sandy soil in the presence of dissolved organic materials // Radochim. Acta. 1998. V. 82. P. 205–211.
38. Neal C., Jarvie H.P., Whinton B.A., Gemmell J. The water quality of River Wear, north-east England // Sci. Total Environ. 2000. V. 251/252. P. 153–172.
39. Ono T. Effects of lanthanide substitution at Ca2+-site on properties of the oxygen evolving center of photosystem II // J. Inorg. Biochem. 2000. V. 82. P. 85–91.
40. Ozaki T., Ambe S., Enomoto S., Minai Y., Yoshida S., Makide Y. Multitracer study of the uptake mechanism of yttrium and rare elements by autumn fern // Radiochim. Acta. 2002. V. 90. P. 303–307.
41. Pang X., Li D.C., Peng A. Application of rare earth elements in the agriculture of China and its environmental behavior in soil // Environ. Sci. Pollut. Res. 2002. V. 9. P. 143–148.
42. Price R.C., Gray C.M., Wilson R.E., Fray F.A., Tayler S.R. The effects of weathering of rare element, Y and Ba abundances in Tertiary basalts from southeastern Australia // Ghem. Geol. 1991. V. 93. P. 245–265.
43. Quiquamoix H., Ratcliffe R.G., Ratkovic S., Vucinic Z. Proton and phosphorus-31 NMR investigation of gadolinium uptake in maize roots // J. Inorg. Biochem. 1990. V. 38. P. 265–276.
44. Sheppard S.C., Grant C.A., Drury C.F. Trace elements in Ontario soils – mobility, concentration profiles, and evidence of non-point-source pollution // Can. J. Soil Sci. 2009. V. 89. P. 489–499.
45. Sonke J.E., Salters V.J.M. Lantanide-humic substances complexation. I. Experimental evidence for a lantanide contraction effect // Geochim. Cosmochim. Acta. 2006. V. 70. P. 1495–1506.
46. Taunton A.E., Welch S.A., Banfield J.F. Geomicrobial controls on light rare element, Y and Ba distributions during granite weathering and soil formation // J. Alloy Compd. 2000а. V. 303. P. 30–36.
47. Taunton A.E., Welch S.A., Banfield J.F. Microbial controls on phosphate and lantanide distributions during granite weathering and soil formation // Ghem. Geol. 2000. V. 169. P. 371–382.
48. Tsuruta T. Separation of rare elements by microorganisms // J. Nucl. Radiochem 2005. V. 6. P. 81–84.
49. Turra C., Fernandes E.A.N., Bacchi M.A. et al. Effects of lanthanum on citrus plant // Int. J. New Tech. Res. 2015. V. 1(7). P. 48–50.
50. Tyler G. Rare earth elements in soil and plant systems – A review // Plant Soil. 2004. V. 267. P. 191–206.
51. Tyler G. Vertical distribution of maior, minor, and rare elements in Haplic Podzol // Ceoderma. 2004a. V. 119. P. 277–290.
52. Tyler G., Olsson T. Concentrations of 60 elements in the soil solution as related to soil acidity // Eur. J. Soil. Sci. 2001. V. 52. P. 151–165.
53. Tyler G., Olsson T. Conditions related to solubility of rare and minor elements in forest soil // Soil Sci. 2002. V. 165. P. 594–601.
54. Tyler G., Olsson T. Plant uptake of major and minor elements as influenced by soil acidity and liming // Plant Soil. 2001а. V. 230. P. 307–321.
55. Wahid P.A., Valiathan M.S., Kamalan N.V., Eapen J.T., Vijayalakshmi S., Prabhu R.K., Mahalingam T.R. Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotrops gigantea // J. Plant Nutr. 2000. V. 23. P. 329–338.
56. Wang L., Liang T. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in differ types of soils // Chemosphere. 2014. V. 103. P. 148–155.
57. Wang L., Liang T., Kleinmann P.J.A., Cao H. An experimental study on using rare earth elements to trace phosphorus losses from nonpoint sources // Chemosphere. 2011. V. 85. P. 1075–1079.
58. Wang Y.Q., Sun J.X., Chen H.M., Guo F.Q. Determination of the contents and distribution characteristics of REE in natural plants by NAA // J. Radioanal. Nucl. 1997. V. 219. P. 99–103.
59. Wei Z.G., Yin M., Zhang X., Hong F.S., Li B. Tao Y., Zhao G.W., Yan C.H. Rare earth elements in naturally grown fern Dicranopteris linears in relation to their variation in soils in South-Jiangxi region (Southern China) // Environ. Pollut. 2001. V. 114. P. 345–355.
60. Wen B., Yuan D.A., Shan X.Q., Li F.L., Zhang S.Z. The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions // Chem. Spec. Bioavailab. 2001. V. 13. P. 39–48.
61. Wu Z.H., Luo J., Guo H.Y., Wang X.R., Yang C.S. Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid // Chem. Spec. Bioavailab. 2001. V. 13. P. 75–81.
62. Xie Z.B., Zhu J.G., Chu H.Y., Zhang Y.L., Zheng Q., Ma H.L., Cao Z.H. Effect of lanthanum on rice production, nutrient uptake, and distribution // J. Plant Nutr. 2002. V. 25. P. 2315–2331.
63. Xie Z.B., Zhu J.G., Chu H.Y., Zheng Q., Zhang Y.L., Chao Z.H. Influence of exogenous lanthanum on fertility parameters of Red Soil and Paddy Soil // J. Rare Earth. 2001. V. 19. P. 229–232.
64. Xu X.K., Zhu W.Z., Wang Z.J., Witkamp G.J. Distribution of rare earth and heavy metals in field-grown maize after application of rare earth-containing fertilizer // Sci. Total Environ. 2002. V. 293. P. 97–105.
65. Zhu J.G., Chu H.Y., Xie Z.B., Yagi K. Effects of lanthanum on nitrification and ammonification in three Chinese soils // Nutr. Cycl. Agroecosyst. 2002. V. 63. P. 309–314.