Гидродепозитарные и гидропроводящие свойства при моделировании влагопереноса в дерново-подзолистых почвах с помощью физически обоснованных моделей

Е. В. Шеин1,2, Е. Б. Скворцова2, С. С. Панина1, А. Б. Умарова1, К. А. Романенко2

1 МГУ им. М.В. Ломоносова, 119991 Россия, Москва, Ленинские горы

Почвенный институт им. В.В. Докучаева, 119017 Россия, Москва, Пыжевский пер, 7, стр. 2

В полевых экспериментах на агродерново-подзолистой среднесуглинистой почве показано, что при наличии гидравлического напора на верхней границе почв движение влаги происходит по преимущественным путям миграции, сокращающим гидродепозитарные характеристики почв. Движение влаги изучали по специальной методике на двух идентичных по размерам (диаметр 42 см, высота 60 см) и почвам монолитах. Перед началом опыта стенки монолитов были обернуты пленкой, покрыты монтажной пеной и закопаны с целью предотвращения боковых потерь влаги. В обоих монолитах одновременно проводили впитывание воды с поверхности, в одном случае на поверхности поддерживали постоянный небольшой напор 5 см, в другом осуществляли мелкодисперсное дождевание без образования слоя воды на поверхности. В задачи работы входило моделирование движения влаги в условиях малонапорной и безнапорной инфильтрации и сравнение расчетных и экспериментальных данных для того, чтобы характеризовать, какое экспериментальное обеспечение модели является наиболее адекватным: основные гидрофизические характеристики (ОГХ), полученные экспериментально эмпирическими методами, либо ОГХ, восстановленные по гидрологическим константам и свойствам почв (педотрансферные функции (ПТФ)). По результатам реальных и модельных данных экспериментальное обеспечение моделей можно расположить в следующем порядке: использование региональных ПТФ дает лучшие результаты, чем ОГХ, полученная методом тензиостатов и капилляриметров, которые лучше ПТФ, используемых в программе Agrotool и соответственно применяющих в качестве предиктора гранулометрический состав (по базе данных ROSETTA), и ПТФ на основании “секущих” Воронина.

Ключевые слова: гидрофизика почв, математическая модель, экспериментальное обеспечение, педотрансферные функции.


HYDRO-DEPOSITARY AND HYDRO-TRANSMITTING PROPERTIES OF SODDY-PODZOLIC SOILS IN THE COURSE OF SIMULATING THE WATER TRANSFER BY PHYSICALLY-GROUNDED MODELS

E. V. Shein1,2, E. B. Skvortsova2, S. S. Panina1, A. B. Umarova, К. А. Romanenko2

1 Lomonosov Moscow State University Faculty of Geography, 119991, Russia, Moscow, 1 Leninskiye Gory

2V.V. Dokuchaev Soil Science Institute, 119017 Russia, Moscow, Pyzhevskii 7, bld. 2

The results of field experiments conducted on the medium loamy agro soddy-podzolic soil showed that due to the hydraulic head of water at the soil surface the moisture movement occurs predominantly through migration ways that deteriorate the hydro-depositary properties of soils. The moisture movement was studied by a special method performed in two soil monoliths identical in size (42 cm in diameter and 60 cm high). The monolith walls were covered by a film, foamed and buried with the view of avoiding the lateral water loss. Both monoliths were simultaneously saturated with water: one of them was under a constant head of water in 5 cm, the other monolith was watered by fine-dispersed sprinkler without the formation of the water layer at the soil surface. The study was aimed at modeling the water movement under conditions of small headed infiltration and without the head of water as well as comparing the calculated and experimental data with the view of assessing the most adequate experimental provision of the model – the major hydrophysical characteristics obtained by empiric methods in the experiment or those calculated on the basis of hydrological constants and soil properties (pedo-transmitting functions). It seemed reasonable to establish that the experimental provision of the model can be shown in the following order: the use of regional pedo-transmitting functions provides better results as compared to the major hydrophysical characteristics, the latter being obtained by the method of tensiometers and capillarometers is better than the pedo-transmitting characteristics used the particle-size distribution as a predictor in Agrotool program (ROSETTA database) as well as those obtained by Voronin’s “secants”.

Keywords: soil hydrophysics, mathematical model, experimental provision, pedo-transmitting functions.


СПИСОК ЛИТЕРАТУРЫ

  1. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986.
  2. Глобус А.М. Экспериментальная гидрофизика почв. Л.: Гидрометеоиздат, 1969. 356 с.
  3. Теории и методы физики почв / Под ред. Шеина Е.В., Карпачевского Л.О. М.: Гриф и К, 2007. 616 с.
  4. Трошина О.А. Физические свойства и элементы гидротермического режима комплексного почвенного покрова Владимирского ополья (на примере сельскохозяйственного поля ВНИИСХ): Aвтореф. дис. … к.б.н. М., 2009. 30 c.
  5. Умарова А.Б. Преимущественные потоки влаги в почвах: закономерности формирования и значение в функционировании почв. М.: ГЕОС, 2011. 266 с
  6. Шеин Е.В., Архангельская Т.А., Гончаров В.М., Губер А.К., Початкова Т.Н., Сидорова М.А., Смагин А.В., Умарова А.Б. Полевые и лабораторные методы исследования физических свойств и режимов почв. М.: Изд-во Моск. ун-та, 2001.
  7. Шеин Е.В., Гудима И.И., Мокеичев А.В. Методы определения основных гидрофизических функций для целей моделирования // Вест. Моск. ун-та. Сер.17, почвоведение. 1993, № 2. С. 18–24.
  8. Шеин Е.В., Кокорева А.А., Горбатов В.С., Умарова А.Б., Колупаева В.Н. Оценка чувствительности, настройка и сравнение моделей миграции пестицидов в почве по данным лизиметрического эксперимента // Почвоведение. 2009. № 7. С. 824–833.
  9. Шеин Е.В., Пачепский Я.А., Губер А.К., Чехова Т.И. Особенности экспериментального определения гидрофизических и гидрохимических параметров математических моделей влаго- и солепереноса в почвах // Почвоведение. 1995. № 12. С. 1479–1486.
  10. Шеин Е.В., Спиридонов Ю.А., Сметник А.А. Миграция пестицидов в почвах. М., 2005. 336с.
  11. Bouma J. Hydropedology as a powerful tool for environmental policy research // Geoderma. 2006. Vol. 131. P. 275–280.
  12. Catchment water balance modelling in Australia1960–2004 // Bougton. Agricultural Water management. 2005. Vol. 71. P. 91–116
  13. Harou J.J., Pulido-Velazkes M., Rosenberg D.E., Azuara J.M., Lund J.R., Hiwitt R.E. Hydro-economic models: Concepts, design, application aтd future prospects // J. Hydrology. 2009. Vol. 375. P. 627–643.
  14. Poluektov R.A., Fintushal S.M., Oparina I.V., Shatskikh D.V., Terleev V.V., Zakharova E.T. Agrotool – a system for crop simulation // Archves Agronomy Soil Sci. 2002. Vol. 48, Issue 6. P. 609–635.
  15. Šimůnek J., van Genuchten M. Th. and Šejna M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Department of environmental sciences university of California Riverside, 2005.
  16. Van Genuchten M.T., Leij and Yates SR. The RETC code for quantifying the hydraulic functions of unsaturated soils, US Salinity Lab, Riverside, CA (1991).
  17. Wilding L.P., Lin H. Advancing the frontiers of soil science towards a geoscience // Geoderma. 2006. Vol. 131. P. 257–274.